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ABSTRACT 
Persistent variations in land use along with land cover in Densu River basin over time, have 
contributed significantly to climatic situations in the basin. This phenomenon has impacted 
the hydrological parameters of the catchment. Therefore, it is essential to analyse the 
repercussions of dynamic changes in land use, anthropogenic activities and climate 
variability on hydrologic regimes of the Densu River basin. The dynamic land-use-change 
modeller, Soil Water Assessment Tool (SWAT) besides Geographic Information System were 
applied in this research. The land use change from 1986 to 2005 recorded a decline in dense 
forest cover from 69% to around 26% whilst open forest increased from around 16% to 
approximately 52%. The results depicted those major hydrological processes in the Densu 
basin were significantly influenced by curve-number (CN2), groundwater-delay-time 
(GW_Delay) and baseflow-alpha-factor (Alpha_BF). Based on recommended performance 
statistics for model timesteps, Nash-Sutcliffe-Efficiency results for calibration and validation 
of the simulations were above 0.80 and classified as good. The PBIAS results were classified as 
good. The spatial dispersion of the basin’s evapotranspiration and groundwater recharge 
zones for the basin were identified. This research provides a foundation for developing 
strategies for monitoring groundwater recharge zones and other hydrological processes in 
river basins. 
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INTRODUCTION 
The rise in population and growing 
anthropogenic activities, in recent years, 
have culminated in the wanton degradation 
of environmental resources especially 
water in developing countries (Welde and  
Gebremariam,2017). Ecological resources 
including land and water, play momentous 
roles in the socio-economic advancement 
of economies around the globe. Therefore 
their preservation must be the top priority 

of every country to realise their optimum 
utilization (Thakur et al., 2018).  

Climate variations as well as Land Use and 
Land Cover Changes (LULCC) remain 
critical determinants linked with 
fluctuations in hydrological processes for 
watersheds (Kumar et al., 2018; Welde & 
Gebremariam, 2017). Variations in 
climatic conditions have been predicted to 
have considerable consequences on the 
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hydrological system of river basins 
globally  (Hermassi and  Khadhraoui,  
2017; Hlásny et al., 2015).  Analysis of 
climate variability and LULCC have 
unveiled a great range of consequences on 
development including socio-economic, 
ecological, government policies and 
operations of intergovernmental entities 
(Dos Santos et al., 2014).  

The precariousness associated with the 
availability, coupled with the accessibility 
of water resources, has been touted to have 
significant distress on agronomic activities, 
straining socio-economic systems and 
posing threats to environmental 
sustainability ( Golmohammadi et al., 
2011). The implications linked with 
climate variations might be critical mainly 
in countries whose economic activities are 
intensely reliant on agribusiness 
productions and related activities (Anand 
et al., 2018; Daggupati et al., 2018).  

Numerous hydrological simulations or 
models have been applied in determining 
hydrological  processes in addition to 
regimes of river basins (Zhang et al., 2017). 
Notwithstanding the successes of these 
techniques in determining the hydrological 
regimes of river basins, the models 
however associated with limitations 
attributed to the calibration and validation 
of parameters (Mekonnen et al., 2017; 
Zhang et al., 2017) alongside the 
availability of adequate datasets. These 
limitations are key constraints hampering 
the reliability of these models particularly 
those that apply to developing countries 
(Bouslihim et al., 2016).  

Several hydrological models such as 
MIKE-SHE, WATFLOOD, TOPMODEL, 
HEC, HEC-RAS, VIC and SWAT (Guzha 
et al., 2018) are proficient in analysing the 
spatiotemporal variabilities in the 
hydrological patterns of a catchment and 
also supporting the consideration of the 
mechanisms that impact land use 

transformations ( Mekonnen et al., 2017; 
Amisigo et al., 2015).  

By exploiting these hydrological 
simulations, some studies have 
endeavoured to examine the hydrological 
repercussions of various watersheds to the 
LULCC and climate variability at varied 
spatiotemporal scales (Hlásny et al., 2015). 
Long-term hydrological records can 
display temporal variations in streamflow 
that may be influenced by climate 
variations along with land use and land 
cover vicissitudes (Xue et al., 2017). 
Investigating such identified changes from 
the hydrological records could recognize 
not only changes in streamflow or runoff in 
the basin but may also help decipher the 
critical impressions of anthropogenic 
deeds and climate change (Guzha et al., 
2018).  

A seamless amalgamation of LULCC with 
any hydrologic model offers a generally 
representative picture of the temporal 
consequences of land use fluctuations 
(Worqlul et al.,2017; Woldesenbet et al., 
2017). Integration of human-induced 
activities and land use with a given 
hydrologic model has the capacity to 
improve the temporal extrapolative 
capability resulting from the model 
(Worqlul et al.,2017). Several researchers 
(Castillo et al., 2014; Hermassi & 
Khadhraoui, 2017) have acknowledged the 
fact that a close-fitting temporal integration 
of LULCC and hydrologic regimes are 
required to precisely characterize the 
connections between climate change, land 
use transformation and hydrologic 
patterns. Although the consequences 
associated with dynamic illustration of 
changes in land use have been documented  
(Yu et al., 2014; Ashiagbor et al., 2013), a 
dynamic incorporation of LUC into 
hydrologic models are seldom cited in 
previous studies (Aladejana et al., 2018; 
Ejieji et al., 2016). LULCC and climate 
changes might have both short-term and 
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long-term insinuations on the hydrological 
patterns of river basins, shifting the 
equilibrium between rainfall and 
evapotranspiration in addition to the 
resulting streamflow (Sisay et al., 2017). 
Fluctuations in the hydrological variables 
could have several inferences on localized 
climatic features and also basin-wide 
characteristics (Guzha et al., 2018). 

The Densu River basin in Ghana has been 
undergoing various levels of LULCC and 
some levels of variations in the climatic 
conditions (Aduah et al., 2017). There have 
been significant observations of increasing 
rainfall patterns in parts of the Densu Basin 
(Ansa-Asare & Gordon, 2012; Schep et al., 
2016). The watershed has also witnessed 
variations in temperature over time (Hagan 
et al., 2011; Osei et al., 2016). These 
observed LULCC and climate variabilities 
provide the necessity to investigate their 
combined consequences on the hydrologic 
system of the Densu River basin. The 
objective of this work is to analyse the 
effects of LULCC and variability in 
climate on the hydrologic regime of Densu 
River basin through hydrological 
modelling. 

MATERIALS AND METHODS 

Hydrologic modelling using SWAT 
Soil and Water Assessment Tool (SWAT) 
was designed mainly to forecast 
implications regarding various ecological 
along anthropogenic activities relating to 
sediment yield, groundwater recharge, 
streamflow regime and agrochemical 
yields in river basins (gauged and 
ungauged) (Arnold et al., 2012). 
Hydrologic modelling in the Densu Basin 
entails a model that can handle the 
challenge of limited data availability. The 
Penman-Monteith model for calculating 
Potential Evapotranspiration (PET) was 
adopted for this study in consonance with 
an earlier study in Africa (Aladejana et al., 
2018; Ejieji et al., 2016). The water balance 

for every hydrological response unit 
(HRU) was determined using Equation 1.  

( ). .
1

f

W f W i i su lat i sub seep
i

S S P Q Q ET Q Q
=

= + − − − − −∑
        …… (1) 

where:  

SW.f: the final soil-water-content (mm); 
SW.i -the initial-soil-water (mm); Pi-
precipitation (mm); Qsub -the groundwater-
flow (mm); Qla -the lateral-flow (mm); 
Qseep – percolation (mm); Qsu -the 
overland-runoff (mm) and ETi -
evapotranspiration (mm) 

In the SWAT model, for a specified time 
step, the overland runoff of the basin was 
calculated by using the Curve-Number 
(CN) method developed as part of Soil 
Conservation Service (USDA-SCS, 1972 
cited by (Hermassi & Khadhraoui, 2017). 
The surface runoff for an HRU was 
calculated using Equation 2  
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where: 

Qsurf -the surface run-off (mm); Rday -
rainfall for a specific day (mm) and S – soil 
water retention parameter (mm). 

The retention parameter was calculated 
using Equation 3 

100025.4 10S
CN

 = − 
 

 ………… (3) 

The CN-value may be classified into three 
situations namely: wet, mean moist and 
dry. The result of the SWAT model covers 
surface runoff, evapotranspiration, 
sediment yield, reservoir water balance and 
groundwater recharge characteristics 
(Puno et al., 2019). 
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SWAT Input Dataset for Hydrological 
Simulation 

To smooth the use of SWAT, the model 
was set up with ArcGIS 10.3 software with 
the ArcSWAT extension for ArcGIS. Fig 1 

shows the conceptual framework for the 
modelling of the hydrologic regime of the 
Densu Basin outlet using SWAT is 
represented in the flow chart. 

 

Fig 1: Conceptual framework for SWAT Modelling (Sisay et al., 2017) 

 

The spatial dataset (GIS input) vital for 
modelling in ArcSWAT interface 
comprises the Digital Elevation Model 
(DEM), land use and land cover (LULC) 
information, climate and soil dataset. The 
calibration and validation stages of the 
SWAT model for the watershed used 
stream discharge data in addition to climate 
data.  

Digital Elevation Model (DEM) 
This refers to raster data encompassing an 
array of pixels that define or entail the 
elevation of an area at a definite spatial 
resolution (Sisay et al., 2017). A 30 m x 30 
m resolution ASTER DEM (Advanced 
Spaceborne Thermal Emission and 
Reflection Radiometer digital elevation 
model) of the Densu basin was used for the 
delineation of the study area. The DEM 
aided the further demarcation of sub-
basins, the flow direction of streams and 
the HRUs. 

Weather Data 
The smooth processing of SWAT 
necessitates meteorological data on a daily 
timescale, that could be generated from a 
field-measured dataset or by adopting data 
from the weather generator model. Daily 
weather datasets comprise wind velocity, 
precipitation, minimum and maximum 
temperature as well as relative humidity. 
The Densu Basin, rainfall and temperature 
(maximum and minimum) data were 
acquired from the Ghana Meteorological 
Agency (GMET) for the period 1976–
2015. The other parameters were simulated 
from the weather generator model. Fig 2 
illustrates the position of weather stations 
located in the Densu River basin. 

 

Land Use and Land Cover 
Land use and land cover (LULC) is 
deemed a very significant feature that 
influences surface runoff, erosion and 
evapotranspiration in river basins. The 
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LULC data of the river basin under 
consideration is needed for HRU 
characterisation and then for determination 
of the Curve Numbers (CN) of the land 
areas for surface runoff calculations as well 
as hydrological analysis. The LULC map 
used for the hydrologic model was 
obtained by processing Landsat satellite 
imageries of 1986, 1991 and 2005. 

The maximum likelihood algorithm 
(MLA) in ArcGIS 10.3 was adopted for 

this study. The MLA remains the most 
widely utilized procedure in land use 
classification (Appiah Mensah et al., 2019; 
Nath et al., 2018). The supervised 
classification of the study area shown in 
Fig 3 was done to reclassify the LULC. The 
Cellular-Automata Markov chain 
algorithm in IDRISI Selva V17 was used 
for the projection of the LULC from 2017 
to 2027 (Liping et al., 2018; Silva et al., 
2020). 

 

 

 

 

Fig 2: Location of Weather stations in the Densu River Basin 
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Fig 3a: Land use and land cover Map of Study Area (a-1986, b-1991 and c-2005) 
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The map representing the LULC 
characteristics (Fig 3) associated 
with the study area was fashioned 
to derive the highly substantial 
land use categories in the Densu 
basin. Reliant on the supervised 
classifications performed, five 
major land use categories were 
observed. It can be deduced from 
Table 1 that Dense Forest has been 
declining over the years whilst 
settlements have been 
experiencing increases in land 
area. 
 

 

 

 

 

 

  Fig 3b: Land use and land cover Map of Study Area (2017 and 2027) 
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Table 1: Land use land cover for 1986-2027 

 1986 1991 2005 2017 2027 
Land Use 

Classification Percentage Percentage Percentage Percentage Percentage 

Waterbody 1.05 1.05 1.56 1.07 0.93 
Settlement 3.83 3.82 7.79 18.90 24.98 
Dense Forest 68.86 68.84 26.07 26.69 19.15 
Open Forest 16.64 16.66 52.12 41.75 42.79 
Cropland 9.62 9.63 12.46 11.58 12.16 
Total 100 100 100 100 100 

 

 

Table 2: Soil Types in the Densu Basin 

S/N Soil Type Percentage (%) 

1 Acrisols 9.25 

2 Arenosols 0.11 

3 Fluvisols 4.45 

4 Leptosols 14.57 

5 Lixisols 58.50 

6 Luvisols 11.88 

7 Plinthosols 0.62 

8 Solonetz 0.44 

9 Waterbody 0.18 

Total 100 

                                                                                       
Fig 4: Types of Soil in the Densu River Basin 

 

Fig 4 displays the categories of soil classes existing in the study area. The percentage coverage of 
each soil class is illustrated in Table 2.  
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Soil Data 
The digital soil information for the Densu 
basin was extracted from the Harmonized 
World Soil Database (HWSD V1.2). The 
HWSD was generated by the Food and 

Agriculture Organization (FAO) of the 
United Nations and its partner institutions 
(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009, 
2012).

Lixisols (58.50 %) are the predominant soil 
type in the Densu River basin, followed by 
Leptosols (14.57 %) and Luvisols (11.88 %). 
These soils, according to (Ashiagbor et al., 
2013), have high sand content compared to 
clay and silt. 

Hydrological Data 

Hydrological Services Department of Ghana, 
provided the daily streamflow data for the 
Densu River. The streamflow data ranged 
from 1976 to 2013. Due to the higher degree 
of missing data and some inconsistencies, the 
Nsawam dataset was adopted for both 
calibration and validation of the hydrological 
model developed. The missing data were 
estimated based on the multi-year mean 
monthly flow observations for hydrological 
stations in the Densu Basin (Napoli et al., 
2017).  

SWAT Model Setup 

Watershed delineation 
The initial stage in producing SWAT model 
input involves the demarcation of the 
catchment from a projected DEM of the study 
area. The data inputs used for the SWAT 
model were then prepared and arranged based 
on their spatial and temporal characteristics. 
Fig 5 illustrates the sub-basins in the study 
area.  

Hydrological Response Units (HRUs) 
The land size for each of the sub-basins was 
segregated into HRUs which facilitated the 
loading of input data such as LULC, soil type 

and the generation of slope map of the model. 
The LULC, soil types and the slope of the 
Densu River basin were reclassified to match 
the parameters set out SWAT database.  

Hydrologic Analysis of Dynamic Land Use 
To incorporate the dynamic land use changes 
(Zarezadeh and Giacomoni, 2017) into the 
hydrologic regime of the Densu basin,  a 
modified version of an R-script (Nguyen, 
2012) for simulating variations in land use 
was applied. Fig 6 depicts the framework for 
dynamic land use change analysis adopted for 
this study. The HRU for hydrologic models 
developed for 1986, 1991 and 2005 were used 
to create an amalgamated HRU. The result 
generated by the model was calibrated and 
validated. 

Calibration and Validation of Model 
Calibration and validation of the model were 
implemented by comparison of the simulated 
and measured streamflow data. Statistical and 
graphical techniques were applied to evaluate 
the performance of the SWAT model. 
Monthly streamflow data for the period 1986 
to 1995 was used for calibration and 1996 to 
2007 were used for validation of the surface 
runoff. A simulation warm-up period of five 
years (1981-1985) was utilized. Semi-
automated Sequential Uncertainty Fitting 
(SUFI-2) calibration and validation system 
implemented in SWAT - Calibration and 
Uncertainty Procedures (SWAT-CUP) was 
adopted for the model’s calibration and 
validation (Abbaspour, 2015). 
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Fig 5: Sub-basins of the study area 

 

Fig 6: Framework for Dynamic Land Use Analysis 
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Model Performance Evaluation 
The hydrological model performance was 
assessed using both statistical and graphical 
methods. The hydrological characteristics or 
streamflow behaviour of the basin was 
evaluated. Statistical parameters such as the 
Nash–Sutcliffe-Efficiency (NSE), coefficient 
of determination (R2), Percentage Bias (PBIAS) 
and  root mean square error to the standard 
deviation ratio  (RSR) with the representative 
hydrographs were chosen as recommended 

(Gyamfi, 2016; Welde and  Gebremaria et al., 
2017).  

Nash-Sutcliff-Efficiency (NSE) 
The NSE values determine the comparative 
extent of residual variance of simulated 
discharge relative to the discrepancy of 
measured or observed data (Nash & Sutcliffe, 
1970). NSE is estimated using Equation 4. 
The NSE values range from −∞ to 1, where 1 
signifies a perfect correlation between 
simulated and measured variables.  

 

( )
( )
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The Coefficient of Determination (R2) 
This indicator determines the proportional 
variation in the observed variable and the 
simulated variable. R2 is calculated by using 
Equation 5.  The results of the coefficient of 
determination vary between 0 to 1. The results 

of r2 determine the level of predictability of 
the dependent variable. High values of r2 
indicate a good correlation between the 
dependent and independent variables and vice 
versa. 
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Per cent Bias (PBIAS) 
The best value of PBIAS is 0.0, whilst low 
values are indicative of correct model 
simulation. Positive values of Pbias show 

underestimation by the model and negative 
values of Pbias signify model over-valuation 
of bias (Bouslihim et al.,2016). It is evaluated 
using Equation 6 and measured in percentage.
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∑

 ……… (4) 

RMSE-observations standard deviation ratio (RSR) 

The RSR was calculated using Equation 7. 
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Where: 

Qobs-observed data; Qsim - simulated data;  

 Mean Observed dataobsQ −  Mean simulated datasimQ −  
 
Sensitivity Analysis of the SWAT Model 
Sensitivity analysis helped to indicate the 
utmost flow parameters (Anaba et al., 2017; 
Kouchi et al., 2017), that impact the basin 
modelled by SWAT for calibration (Anaba et 
al., 2017). This was accomplished by 

applying the semi-automated Sequential 
Uncertainty Fitting (SUFI2) algorithm, which 
uses the global sensitivity evaluation 
technique (Abbaspour, 2015; Marhaento et 
al., 2017; Kumar et al., 2018). 

                                                    

Table 3: Parameters for Sensitivity Analysis  

 

(source: (Kiros et al., 2015)) 
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The sensitivity parameters (Table 3) are 
necessary for estimating the quantity of flow 
a watershed generates. The p-values and t-
statistics displayed in Table 3 help to rate the 
numerous parameters thought to determine 
the stream flow. The final range and sorting 
of parameters were made concerning the 
statistical significance of the ranked 
parameters (Anaba et al., 2017). 

RESULTS AND DISCUSSION 

Sensitivity Trends of Streamflow 
Global sensitivity analysis relating flow 
parameters designated that streamflow for the 
Densu basin was highly sensitive to three 
parameters (Table 4), the groundwater-delay 
period (GW_Delay), the baseflow-alpha 
parameter (Alpha_BF) and curve number 
(CN2).  The sensitivity of threshold water 
level in shallow aquifers for baseflow 
(GWQMN) was statistically not significant.  

These results are reinforced by the 
conclusions of other researchers (Gyamfi et 
al., 2016; Castillo et al., 2014; Chu et al., 
2010), which advocate that curve number 
(CN2), groundwater-delay-time (GW_Delay) 
and baseflow-alpha-factor (Alpha_BF) are 
sensitive streamflow parameter. Even though 
streamflow was deemed to be less sensitive to 
the other parameters in the basin (the less 
sensitive parameters had p-values that were 
bigger than 5%), there are other studies 
(Demirel et al., 2018; Dwarakish and Ganasri, 
2015) with similar sensitivity levels of these 
parameters in their research work.  
According to a study by Anaba et al., (2017), 
because of the vicissitudes in the geographic 
location of basins, soil types, geology,  
LULCC and climatic factors, variations and 
deviation of sensitivity parameters do not 
greatly influence the models. Results from the 
calibration and validation of sensitive 
streamflow parameters (Table 5) indicated the 
influence of sensitive parameters. 

 

Table 1: Ranking of Sensitivity parameters 
Parameter Name P-value t-stat Ranking 

V__GW_DELAY.gw 0.00 7.63 1 
V__ALPHA_BF.gw 0.00 4.00 2 
R__CN2.mgt 0.04 1.88 3 
V__GWQMN.gw 0.46 -0.74 4 

where, 
V__ specifies that the value of the parameter is replaced by the derived value;  
R__ specifies the value of the parameter is multiplied by (1 + the given value) 

 

Table 2: Calibrated values of sensitive streamflow parameters 
Parameter Name Min_value Max_value Fitted Value 

R__CN2.mgt -0.200 0.200 -0.135 
V__ALPHA_BF.gw         0.000 1.000 0.103 
V__GW_DELAY.gw         30.000 450.000 39.45 
V__GWQMN.gw          0.000 2.000 1.045 

Where: 
Prefix v__ specifies that the value of the parameter is replaced by the derived value;  
Prefix r__ specifies the value of the parameter is multiplied by (1 + the given value) 
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SWAT Model Results 
The observed and simulated streamflow 
results for both calibration (January 1981 to 
December 1995) and validation (January 
1996 to December 2007) periods are 
correlated based on statistical parameters. 
Graphical presentation of results for 
calibration together with validation of the 
models are displayed in Fig 7 and Fig 8. 

The coefficient of determination of the 
calibration (Fig 9) as well as the validation 
cycles (Fig 10) were 0.94 and 0.92 
respectively. These results illustrate a greater 
correlation between the simulated and 

observed data for calibration timesteps 
compared with the validation period. 

Statistical SWAT model’s performance for 
streamflow outputs or outcomes during the 
calibration and validation timesteps are 
displayed in (Table 5). Based on the 
recommended performance statistics for 
monthly timestep (Daggupati et al., 2018; 
Demirel et al., 2018), NSE and R2 results for 
both calibration and validation of the model 
were greater than 0.6 and could be deemed 
good (Table 6). The PBIAS results could be 
classified as good. The RSR results can also 
be said to be very good. All these results 
indicate a good model performance.

  

Fig 7: Monthly streamflow for Nsawam gauge station during calibration (1981-1995) 

 

Fig 8: Monthly streamflow for Nsawam gauge station during validation (1996 – 2007) 
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Table 3: Model performance statistics 

Statistical parameter 
Model Stage 

Calibration Validation 
R2 0.94 0.92 

NSE 0.88 0.83 
RSR 0.22 0.25 

PBIAS (%) 1.3 1.8 
 

 
Fig 9: Simulated and observed discharge for the calibration period (1981-1995) 

where –  
x represents the observed streamflow 
y represents the simulated streamflow 
 

 
Fig 10: Simulated and observed discharge for the validation period (1996-2007) 

where –  
x represents observed streamflow 
y represents simulated streamflow 
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Land Use and Land Cover Dynamics and 
Streamflow  

It can be deduced from Fig 11 that the flow 
pattern, compared to preceding periods, 
shows some consistent behaviours. Another 
critical reason that accounts for streamflow 
may be the influence of rainfall alongside 

temperature changes in the Densu Basin 
(Abeysingha et al., 2016; Cancelliere 2019; 
Jajarmizadeh et al., 2017). Streamflow 
variability has been observed to be greatly 
influenced by climate forcing and 
groundwater flow characteristics.

 

 

Fig 11: Observed and Simulated Streamflow (1981-2007) 

The land use conversions were mainly from 
dense forests and open forests to other land 
classes such as bareland, cropland and 
settlements. The hydrological balance in a 
watershed is inveigled greatly by alterations 
of the LULC (Dos Santos, et al., 2018). 

Results from the study (Fig 12) depict that the 
mean annual evapotranspiration for the Densu 
basin was high for upstream areas of the 
basin. These areas have dense forests and 
sparse forests as dominant land cover 
(Woldesenbet et al., 2017). The dense forest 
areas had average ET values ranging between 
700 and 900 mm. The downstream areas also 
recorded moderately high evapotranspiration. 
The land use classes for the downstream areas 
were predominantly settlement and some 

agricultural fields (Kouchi et al., 2017). The 
downstream values ranged between 500mm 
and 700mm. The barelands, paved areas and 
built-up conditions downstream contributed 
significantly to high temperatures which 
serve as a trigger for evapotranspiration (Liu 
et al., 2019).  

The mid-stream portions of the basin recorded 
relatively low ET values ranging between 419 
to 425 mm. The mid-stream areas of the basin 
have mixed land use classes – dense and 
sparse forests, settlements, Cropland and 
water bodies. The low ET values may be 
attributed to the tendency for precipitation to 
be converted to surface runoff hence reducing 
the quantum available for ET (Jajarmizadeh et 
al.,2017). 
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Fig 12: Average Annual Evapotranspiration for Densu Basin 

 

The surface runoff of the basin for the 
upstream area was lower (31.14 - 52.18 mm). 
The mid-stream portions had moderate 
surface runoff values (52.18- 88.63 mm) 
while the downstream recorded high surface 
runoff values (88.63-521.20 mm). These 
results indicate an inverse connection 
between the intensity of forest cover and 
surface runoff. The results (Fig 13) depict that 
a decline in forest cover results in an upsurge 
in surface runoff. Outcomes from other 
investigations related to forest cover 
situations demonstrated that surface runoff 
declined when forest cover made gains 
(Guzha et al., 2018). Therefore, the results 
from the LULC for 2017 and 2027 bring out 
the fact that the forest cover of the basin is 
declining at an alarming rate and hence may 

result in flash floods especially in built-up 
areas. This assertion is clearly depicted in Fig 
13. 

The study identified potential groundwater 
recharge zones in the basin. The areas that 
were identified to have high percolation (Fig 
14) coincided with the high-elevation zones in 
the basin. Some of the areas (Kuano, Osiem 
and Akyem-Asafo) are notable farming areas. 
The identification of these areas as high 
percolation areas requires the education of the 
communities on agronomic practices that 
would curtail the pollution of groundwater. 
The basin is underlain by a granitoid and 
hence groundwater recharge in the mid-
stream could be relatively low compared to 
the upstream. 
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Fig 13: Average Annual Surface Runoff for the Densu Basin 

 

 

 

 

 

 

 

 

 

 

 

Fig 14: Average Annual Percolation of the Densu Basin 
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CONCLUSION 
For this research, the SWAT model was 
utilized in the examination of the hydrologic 
feedback of the Densu River basin resulting 
from dynamic LUC. The sensitive parameters 
of streamflow were curve-number (CN2), 
groundwater-delay (GW_DELAY), 
baseflow-alpha-factor (ALPHA_BF) and 
threshold depth of water in shallow aquifer 
required for return flow (GWQMN). The 
most statistically significant parameters were 
CN2, ALPHA_BF and GW_DELAY. Thus, 
these factors could be applied during future 
hydrological and ecological research for 
Densu basin. The pertinency of the SWAT 
model in modelling stream flow dynamics of 
the Densu River basin has been validated by 
the satisfactory results of the model and 
simulation statistics. The changing LULC as 
well as variability in climate was observed to 
influence evapotranspiration, groundwater 
recharge and surface runoff.  
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